Write the following cubes in the expanded form : $(3 a+4 b)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Comparing the given expression with $(x+y)^{3},$ we find that

$x=3 a$  and     $ y=4 b$

So, using Identity $VI$, we have :

$(3 a+4 b)^{3} =(3 a)^{3}+(4 b)^{3}+3(3 a)(4 b)(3 a+4 b) $

$=27 a^{3}+64 b^{3}+108 a^{2} b+144 a b^{2}$

Similar Questions

Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Factorise : $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases :  $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.